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Hydrodynamic damping of floating bodies is due mainly to wave radiation and 
viscous damping. The latter is particularly important in controlling those responses 
of the body for which the wave damping is small. The roll response of ship hulls near 
resonance in beam seas is an example of this. The present paper applies a discrete 
vortex method as a local solution to model vortex shedding from the bilges of a barge 
hull of rectangular cross-section and hence provides an analytic method for 
predicting its coupled motions in three degrees of freedom, including the effects of the 
main component of viscous damping. The method provides a frequency-domain 
solution satisfying the full linearized boundary conditions on the free surface. 

1. Introduction 
Calculation of the flows associated with ship motions is usually based on linear 

potential flow theory, see for example Newman (1977), and with one notable 
exception, the response of a ship to regular waves is generally well predicted by this 
theory. Damping is associated with the waves which radiate out from the body due 
to its motion. But in situations in which the radiated waves are relatively small, that 
is when the system is lightly damped, the main contribution of the surface waves is 
to provide a forcing function. This effect is conspicuously evident in the case of roll, 
particularly near resonance, when the response can be greatly overpredicted by 
linear theory (Salvesen, Tuck & Paltinsen, 1970), see figure 1. This deficiency in 
methods based purely on linear potential theory has been overcome, for engineering 
purposes a t  least, by incorporating empirical, or semi-empirical, coefficients into the 
calculation procedures. It has been found that increasing the roll damping coefficient 
by an appropriate amount leads to good agreement between predicted and 
experimental results. The underlying rationale and methods for choosing the 
damping coefficient vary from practitioner to practitioner (Himeno 1981). 

The results of a semi-empirical method developed by Tanaka (1961) to predict 
wave and viscous damping are shown in figure 1. Examples of other approaches are 
the work of Ikeda, Himeno & Tanaka (1978), who attempted to determine 
experimentally the individual components of the roll damping (due to the effects of 
skin friction, flow separation from the hull and its appendages, dynamic lift and wave 
damping), and of Kaplan, Jiang & Bentson (1982), based on the concept of crossflow 
drag on the hull and its appendages. 

For engineering purposes the motion of floating bodies can be predicted more or 
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FIGURE 1. Roll amplitude vs. frequency for a rectangular cylinder in beam waves (Salvesen 
et al. 1970). -, wave and viscous damping; ---, wave damping only; 0 ,  experiment. 

less reliably using semi-empirical methods (in the case of conventional hull forms) 
and empirical methods (for unusual vessels and other marine structures). Such 
calculations, however, yield little information about the basic physics of the flow, 
although they do for the most part imply the presence of nonlinea.rities associated 
with viscous effects. The physical causes of the discrepancy between responses 
predicted by linear potential theory and those found in practice have been studied 
by a number of investigators. One explanation that has been offered is that  the 
differences are simply due to the fact that  certain higher-order effects have been 
neglected. Denise (1982) for example has suggested that they are due to ‘water- 
structure interactions in the splash zone’ which could be accounted for by using 
nonlinear restoring coefficients in the equations of motion. The majority of papers in 
the literature, on the other hand, make use of equivalent linear viscous roll damping 
coefficients, implying that there is additional damping due to nonlinearities arising 
from viscous effects. It is difficult to  find incontravertible evidence in support of 
either point of view and i t  is probable that either or both phenomena can 
significantly affect the motions, depending on the ambient conditions. However, 
models that only incorporate nonlinear restoring forces (Denise 1982 ; Robinson & 
Stoddart, 1986) are unable to account completely for the measured response. In order 
to do so, they also require the inclusion of viscous damping coefficients. I n  contrast, 
it has not been found necessary under normal conditions to  incorporate nonlinear 
restoring forces into models that  already allow for viscous damping effects. 

Of the other factors that  may be expected to influence the roll motion of a ship, 
the effect of surface tension, even a t  scales of the order commonly used in model 
testing, has been found to be negligible (Ueno 1949). Similarly the effect of skin 
friction on the hull has been shown to be small and can be ignored for most practical 
purposes (Kato 1958). On the other hand, the viscous effects associated with flow 
separation from the hull and its appendages, particular if they are sharp edged or of 
small curvature, and also, if the vessel has forward speed, the effect of dynamic lift 
(Schmitke 1978), can make significant contributions. 
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FIGURE 2.  Vortex shedding from bilge corner of model barge during forced roll experiments. 

Flow-visualization experiments of rolling motion show that separation from the 
hull surface does occur, particularly if it has sharp edges and appendages. A flow 
visualization of a forced roll experiment carried out on a model barge in a wave 
flume is shown in figure 2. During the experiment it was observed that shear layers 
separating from the bilge corner rolled up to form vortices in a manner very similar 
to that displayed by oscillatory flows of small displacement amplitude about sharp- 
edged cylinders. The process will be discussed in more detail at a later stage. 

Other experimental evidence suggests the existence of a viscous damping moment 
proportional to the square of both the frequency and the amplitude of roll (Himeno 
1981). Furthermore, i t  has been observed that the roll amplitude of a sharp-edged 
barge is smaller than that of a similar vessel with rounded edges in identical 
conditions, although the roll response was nonlinear in both cases (Brown, Eatock 
Taylor & Pate1 1983). This is consistent with the idea of nonlinear damping due to 
vortex shedding, the forces due to separation from a rounded bilge being smaller than 
those due to separation from a sharp one. The subject has been considered in more 
detail in the discussion of a paper by Robinson & Stoddart (1986) presented a t  the 
RINA spring meeting. 

Overall, the available evidence suggests that providing the motions are not 
extreme the most significant factor inducing roll damping is flow separation from the 
hull surface. The present paper describes a theoretical method for predicting this 
effect for the case of a flat-bottom, wide-beam, shallow-draught barge of rectangular 
section floating in regular beam waves a t  small amplitudes. This problem is well 
defined in terms of flow separation from the hull surface and is of considerable 
practical interest since ocean-going barges of this type are used to transport offshore 
structures. Accurate assessment of roll response must be made before a tow out can 
take place. 

2. Discrete vortex modelling of flow separation at a bilge corner 
The flow round a bilge corner is essentially a high-Reynolds-number oscillatory 

flow in which separation is fixed by the geometry of the body. Vortex formation in 
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this flow has some similarities to that in impulsively started flows. Flows of this 
naturc having a strong vortex structure are more easily modelled by the discrete 
vortex method than by a full numerical solution of the Navier-Stokes equation. The 
discrete vortex method provides a time domain solution for separated flow about 
bluff bodies. At separation the Kutta-Joukowski condition is satisfied and the bodies 
themselves are modelled by conformal mapping techniques or by the use of 
distributions of surface singularities (the boundary integral equation method). 
Variations of the discrete vortex method relevant to the present work have been 
reviewed by Graham (1985). Fink & Soh (1974) first used the discrete vortex method 
to investigate the effect of bilge keels on heave damping, and also considered the 
development of bilge vortex sheets and the resulting nonlinear forces for slender 
ships in manoeuvre situations. More recently Ikeda & Himeno (1981) used the 
method to investigate the influence of viscous effects on the damping of a ship 
subjected to large-amplitude sway. 

In  addition to the experimental work described earlier, Brown & Patel (1981) 
proposed a discrete vortex model for forced barge roll (motion about a fixed roll 
centre) in which the barge was represented by a semi-infinite body rather than a 
realistic cross-section. Results of computations based on this geometry and presented 
in subsequent papers (e.g. Patel & Brown 1986) are difficult to assess, partly because 
the boundary conditions were not rigourously formulated, and partly because there 
was no representation of the free surface. The lack of a free surface required a number 
of assumptions concerning the physics of the flow, and the inclusion of some 
empirically established factors. 

The problem of forced barge roll was also investigated by Bearman, Downie & 
Graham (1982), who modelled the free surface and barge with a Schwartz-Christoffel 
transformation and satisfied the boundary conditions on the body using a 
distribution of source singularities. The results of a parametric study of forced barge 
roll showed good agreement between the scale of predicted and observed vortices, 
and between predicted and experimental damping coefficients. They also demon- 
strated the dependence of the damping coefficient on the location of the roll centre 
and the barge geometry. 

Variations of the discrete vortex method have also been used to calculate the force 
on ships in still water subjected to a transverse current (Faltinsen, Aarsnes & 
Pettersen 1965) and to compute two-dimensional eddy-making damping coefficients 
for incorporation into an analysis of the slow drift oscillations of moored ships 
(Faltinsen & Sortland 1967). The earlier analysis employed a multi-point vortex 
tracking method involving the solution for the velocity potential in terms of a 
distribution of sources and dipoles over the body surface and free shear layers a t  each 
timestep. The lengthy computations required by this method were avoided in the 
later analysis by using the Brown & Michael (1955) approach in which each bilge 
vortex was represented by a single concentrated vortex. The slow drift oscillation of 
moored ships is a low-frequency phenomenon and so the problem was further 
simplified by ignoring the higher-frequency wave motions and formulating i t  in the 
low-frequency limit. Faltinsen & Sortland present vortex force coefficients but do not 
give any results for the motion responses. 

Whilst it is probably the most promising way forward a t  the present time, 
problems in ship hydromechanics are expensive to compute as time histories by this 
discrete vortex method and it is often difficult to carry out the computation for a 
sufficiently long time to attain steady conditions. One way of circumventing this 
problem is to evaluate the vortex force coefficients from generalized results of a 
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discrete vortex analysis of flow about an isolated edge. This ‘inner’ flow is matched 
to a corresponding ‘outer’ linearized potential flow about the bilge of a vessel 
responding to specific wave or other excitation forces. In  this way one time- 
consuming vortex calculation can be used to provide results for a complete range of 
motions for any given vessel. This method differs from others known to the authors 
in that it can predict the coupled motion of the barge in three degrees of freedom and 
is capable of generalization to all six degrees of freedom. It also satisfies the full 
linearized boundary conditions a t  the free surface and so is not constrained by a low- 
frequency limit (i.e. a flat rigid free surface assumed by other vortex computations), 
and it provides a solution in the frequency domain and so is computationally 
relatively efficient. 

In the case of roll, sway and heave motion in beam seas, a two-dimensional flow 
field is assumed. The outer flow field associated with the general motion of the barge 
is solved by a full boundary integral method. Since this method is based on an 
inviscid potential flow theory which cannot model flow separation, singularities 
occur a t  the bilge corners. The inner region is solved using the discrete vortex method 
applied to flow about a single edge, in which the Kutta-Joukowski condition ensuring 
smooth separation is satisfied. The matching of the two flows may be viewed as being 
analogous to the replacement of the outer flow singularities a t  the bilge corners with 
physically realistic inner flows in which separation occurs. The method assumes that 
the flows associated with each edge do not interact and also that the wave-making 
effects of the vortices are insignificant. The first assumption is justified providing the 
roll amplitudes are sufficiently small. The results of the method are in fact in 
reasonable agreement with measured data up to moderately large roll angles. The 
second assumption is consistent with observations of the behaviour of the model barge 
in the flow visualization experiment mentioned previously. In  addition, in order to 
incorporate the vortex forces into a conventional motion response computation in 
the frequency domain i t  is necessary to ignore the higher harmonics from the 
nonlinear vortex forces. I n  practice these harmonics contribute less than 10 % to the 
vortex forces. Their effect is negligible a t  resonance but could be important a t  
harmonics of the resonant frequency. However, accurate response predictions are not 
usually so necessary a t  these higher frequencies. 

3. Oscillatory flow about an isolated edge 
Oscillatory flow of amplitude 0 and period T about a body of diameter d may be 

characterized by the Keulegan-Carpenter number, KC = oT/d. At small KC the 
maximum displacement of the fluid particles in the undisturbed flow is small in 
comparison with the scale of the body. Thus vortices may only move away from its 
edges under the influence of the velocity fields of other vortices shed from those same 
edges, and hence the shedding from a single edge may become independent from the 
shedding from other edges. In  these circumstances, the local flow becomes analogous 
to that of oscillatory flow about an infinite wedge. Experiments on sharp-edged bluff 
bodies (Singh 1979) have shown that a t  low KC, vortices shed from any given edge 
at  each half cycle form pairs that convect away from the body, and localized 
shedding occurs. 

The discrete vortex analysis of shedding from an isolated edge carried out by 
Graham (1980) assumed that this type of paired shedding occurs. A typical flow field 
predicted by this method after four cycles is shown in figure 3. Computations were 
carried out for a series of infinite wedges of varying internal angle 6. 
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FIGURE 3. Discrete vortex representation of flow about isolated edge (Graham 1980). 0 ,  vortices 
shed on previous half cycle; 0, vortices shed on current half cycle; 4, direction of flow. 

The complex force, Fv due to vortex shedding was related to the vortex strengths 
and positions by 

This result can be deduced from Blasius theorem or momentum considerations 
(Graham 1980). 
rn is the st,rength of the nth discrete vortex located a t  the point C,, in the 

transformed plane and whose image is located a t  C,*. The vortex force may also be 
written in the form 

where h = 2 - 6/n and Y is a dimensionless function of time. The force was found to 
act a t  right angles to the bisector of the infinite wedge. 

Since the wedge is infinite, it provides no natural lengthscale. However, there is a 
lengthscale L implicit in the transformation 

(3) z = Ll-ACA, 

mapping a wedge in the z-plane into a half-plane in the <-plane. It can be defined as 
the distance from the edge of a point zp in the real plane that is equal to the distance 
from the origin of the corresponding point Cp in the transformed plane, i.e. L = IZ,I 

These wedge flows may be matched to the inner region of an oscillatory flow 
(amplitude 0 and period T )  past a finite body with the same edge angle 6. I n  that 
case the lengthscale must be related also to U and T in order that the attached flow 
velocity U should be the same for both. The complex potential for the attached flow 
round a wedge is: 

where CT is a velocity scale. I n  terms of this the maximum amplitude of attached flow 
velocity on the surface of the wedge q(L,) a t  a distance L, from the edge is given 

for IZ,I = 161. 

w = 0 5 ,  (4) 
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t y  

FIGURE 4. Barge transformation. (a)  Real plane, z = L+ iy. (b )  Transformed plane, 5 = i + i T  

Therefore, if the timescale of the flow is taken as the period, T ,  the lengthscale is 

L, ~ ~ ( ~ - ~ ) / A ( L ~ ) ( ~ - A ) / ~ T ,  (6) 

i.e. (7)  

The in-line force on a bluff body in sinusoidal flow, U = 0 sin 0, (0 = wt) ,  is 
commonly given by Morison’s equation 

F z2 - = -Cm cosB+C, sin0 [sin@[, 
$U2d KC 

where C, is the inertia coefficient and C, is the drag coefficient, the drag being 
entirely due to  vortex shedding. The inertia coefficient may be split into two parts, 
C,, associated with the attached flow, and Cmv with the effects of vortex shedding. In 
the case of bodies which are symmetric with respect to the direction of the flow, the 
overall force coefficients C, and C, may be found straightforwardly from the vortex 
force in the matched infinite wedge flow. A more detailed account of this procedure 
is given in Bearman et al. (1985). However, this result does not hold for asymmetric 
bodies, such as the immersed part of the hull of a rolling barge, due to the fact that 
generally the pressure field associated with vortex shedding a t  an edge is significant 
on parts of the body remote from the edge. 

4. The vortex forces due to shedding at bilge corners 
If a rectangular barge in still water is represented in the complex plane, the z- 

plane, as shown in figure 4, and sources are distributed over its surface so as to satisfy 
the boundary conditions arising out of its subsequent motion, the complex force Z 
and the roll moment about the origin M ,  may be calculated respectively from 

Z = X + i Y  = i I B p d r .  

M ,  = J B p  Re{zdz}, 

where, 
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is the pressure, q is the surface velocity, $ is the velocity potential, zis the complex 
corijugate of z = x+iy and the integration is carried out over the body surface 

In calculating the pressure field and forces on a body in waves using linear 
potential theory, it is conventional to ignore the q2 term in the unsteady Bernoulli 
equation for the pressure, since it is second order in the wave height and motion 
amplitude. The following analysis similarly ignores the q2 term associated both with 
the attached flow and also with vortex shedding and so cannot be regarded as 
complete to second order. However, in addition to  the usual a$/at term associated 
with the attached flow, the a$/at term associated with vortex shedding will be 
included. The aim of the present analysis is to evaluate the lowest-order contribution 
to the pressure due to vortex shedding, on the basis that  this is the dominant term 
for conditions such as roll motion for which the first-order radiation damping 
becomes very small. The q2 term associated with vortex shedding is therefore ignored 
because its contribution is the same size as the wave potential contribution to 
lV$12, since the Kutta-Joukowski condition shows that the two must be equal and 
opposite a t  the separated side of the edge. In  addition, because of its image effect the 
vortex contribution towards the velocity field will be seen to  be like that of a dipole 
a t  large distances r from the edge, falling off as rp2 .  The effect of this component on 
overall forces and moments on the body is therefore limited to a small region in the 
vicinity of the edge of size proportional to the lengthscale of the vortices. 

The c?$/at term associated with the vortex shedding, although also of second order, 
is retained because its contribution to the pressure falls off as r-' and so makes a 
significant contribution to  the force and moments from the whole of the body 
surface. This is consistent both with the fact that linear potential theory alone 
cannot adequately predict roll responses and also that the experimental evidence, as 
discussed previously, indicates that  vortex shedding makes the major contribution 
to the roll damping when the linear wave damping is comparatively small. The 
observations of Brown et al. (1983) concerning the reduction of roll damping obtained 
by rounding sharp-edged bilges are particularly significant in this respect. 

The contribution made to the complex potential by N discrete vortices shed from 
a bilge edge, W,, may be written as 

f R) 

where 5, is the location of the nth vortex of strength r,, 62 is the location of its image 
and W, is always real when 5 lies on the surface of the barge. The corresponding 
pressure field is 

where the Nth discrete vortex is the last to be shed and is the only one whose strength 
is changing with time. The first term in the pressure equation is continuous and has 
a finite value of 

~ - 1  r, a 
- P  2 --(Arg[CCl-Cnl). n: dt 

The second term is finite but discontinuous, having a jump of p(ar,/at) a t  the 
edge. 
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Introducing the location of the shedding edge Q into the complex potential, and 

The pressure on the surface of the barge can therefore be represented by the dipole- 
like exmession 

which holds everywhere except very close to the bilge edge cd. The difference between 
the full equation and the dipole approximation for the vortex induced pressure P, 
over the surface of the barge is only significant over a region of order I{, - Cd1 around 
the bilge edge. Therefore the lowest-order term, with respect to the amplitude of 
motion, of the pressure distribution on the body due to vortex shedding is given by 
the dipole approximation. 

In  order to calculate the complex force and the moment on the body, i t  is 
convenient to integrate the pressure in the transformed plane. I n  the case of a 
rectangular barge, as shown in figure 4, the two planes are related by the 
Schwartz-Christoffel transformation 

where 
the physical plane, and it is a necessary property of the transformation that 

and 5, in the transformed plane correspond to the bilge edges zD and zE in 

In  the vicinity of a shedding edge, zD for example, it may be seen that 

where 6' = 5- 6. This latter property of the transformation is used in matching the 
local flow about a shedding edge to an exterior flow associated with the barge 
responding to excitation by regular waves. 

The complex force 2, on the barge due to vortex shedding from a single edge is 

Similarly, the moment M ,  about the origin due to vortex shedding from one edge is 
given by 

9 
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The term 

is a universal vortex shedding factor which can be obtained from a discrete vortex 
computation of vortex shedding from an isolated right angled edge in oscillatory 
flow, see equation ( 1 ) .  The coefficients a,, and am, are given respectively by the 
integral expressions 

(21) 

where the overbar signifies the complex conjugate. The integrals depend only on the 
barge geometry and can be calculated straightforwardly in the transformed plane. 
Consequently the computationally expensive vortex calculation may be separated 
from the particular geometry of the barge and its motion, and need in principle be 
done only once to provide the factor for all cases having the same bilge edge 
angle. 

5. Matching the edge flows 
The total flow field about a barge responding to waves may now be found by 

matching locally the flow in an outer region, calculated by the boundary integral 
method described previously or some other potential flow method, to the flow in an 
inner region given by the discrete vortex analysis of oscillatory flow about an infinite 
wedge. The matching is carried out in the transformed plane where both velocity 
fields are finite a t  the edge so as to avoid the singularity which would occur a t  that 
point in the real plane (see figure 5). 

The transformation that maps an infinite wedge into a half-plane is 

c! (23) = e - i + ~ - t  

where L is the lengthscale implied by the transformation as discussed previously. The 
transformation that maps a barge of rectangular section into a half-plane, in the near 
vicinity of the shedding edge (see (18)) is 

(24) 

L = a, I, (25)  

= e-& (a, 11-t ,$. 

The geometry of the barge is identical with that of the wedge close to their respective 
edges provides that 

which makes the transformations identical. 
The velocity in the physical plane, U,, is related to the velocity in the transformed 

(26) 
dc u, = u -. 

plane, by 

dz 

If the lengthscales are matched (equation ( 2 5 ) )  and the transformed edge velocity for 
the barge, uB, is the same as the transformed edge velocity for the wedge, u,, then 
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FIGURE 5. Matching the local and exterior flows. 

the flows around the edges in the physical planes are also identical. It may be seen 
from equations (l) ,  (2) and (19), therefore, that the complex force on a barge due to 
vortex shedding from one of its bilge corners is 

(27)  = 1 [?2LKC(3-2/\)/2A-l y 
v ZP a,,, 

if 0 = 4, = 4, L = a, 1. The moment about the point 0 is 

0 ZP am". (88) 

The vortex forces experienced by a floating barge, then, can be found from the 
discrete vortex analysis of an infinite wedge, matched to each bilge, and the 
calculation of the flow velocity u, given by potential (attached flow) theory in the 
transformed plane at  points corresponding to the edges of the bilges. The calculation 
of uB generally involves a fairly lengthy computation. 

M = 1 flZLK(J(3-2A)12A-l 

6. Calculation of the exterior flow field 
The exterior wave flow field is described by a velocity potential which satisfies 

Laplace's equation. This potential 0 may be written in terms of the components for 
each wave frequency w :  

where q50 is the potential for the undisturbed incident wave, 6, for the wave scattered 
by the ship considered as a fixed body, and q5j for the waves radiated by the ship when 
moving in its six rigid body modes, H ,  = qj eiwt, (1  surge, 2 sway, 3 heave, 4 roll, 5 pitch 
and 6 yaw). Where it is understood that the real part only of the potential is 
considered. 2 is the longitudinal axis of the hull parallel to the roll axis. Each 
component of the potential satisfies the linearized free surface condition 
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FIGURE 6. Velocity distribution on barge surface. 0, velocity amplitude, oB, in real plane; x , 
velocity amplitude, 2iB, in transformed plane; A, phase angle, $B. 

and, except for $,, a normal velocity condition on the body and the sea bed and a 
radiation condition. 

In  this paper we use the source panel method to represent the potentials. Thus 

The integral is over the points q lying on the wetted surface of the ship in its still 
water position, a(q )  are the source densities and G(q', q )  are suitable Green functions 
(John 1950). The potentials are evaluated by solving the boundary integral 
equations on the surface of the ship numerically (e.g. Brown et al. 1983). 

The equations of motion of the freely floating body can conveniently be expressed 
as 

c [ - 4 M j k  +&) - iwB,, + C,,l rk. = jj? (32) 
k 

where M is the mass matrix, A is the added-mass matrix, B is the matrix of damping 
coefficients, C is the matrix of restoring coefficients and fj are the complex 
amplitudes of the exciting forces and moments. The added-mass, damping and 
exciting forces are calculated from the linearized form of Bernoulli's equation : 

p =  --p - +gy, (3 (33) 

using the values of the potentials given by the boundary integral method. 
In the present case the problem is considerably simplified by following Salvesen 

et al. (1970) and using strip theory - that is, by reducing the three-dimensional solu- 
tion to a series of two-dimensional solutions carried out a t  a number of transverse 
sections along the hull and integrating over its length, L,. Under these conditions the 
three-dimensional Laplace equation and the boundary conditions for the potential 



Effect of vortex shedding on the coupled roll response of bodies in waves 255 

reduce to  those appropriate to the two-dimensional problem of a body with cross- 
section C, oscillating in the free surface. 

The potentials may be found using a standard two-dimensional panel method 
using panels of constant source density and line singularity approximations for the 
far-field effect of each panel. The method has been tested on a ship section for which 
Vugts (1971) has presented results and good agreement was obtained. 

By solving the equations of motion and taking the appropriate derivative of the 
potential, the relative velocity on the surface of the vessel may be determined a t  
points adjacent to and on either side of the bilge edges. The matching of the interior 
and the exterior flows is carried out in the transformed plane because the attached 
flow velocity field is singular a t  the edges in the real plane but finite a t  the 
corresponding points in the transformed plane. The velocity amplitude, UBj, a t  a 
point Q in the transformed plane is given by the relationship 

The velocity amplitude at the point in the transformed plane corresponding to the 
bilge edge is obtained by interpolation. An example of the velocity distribution over 
the barge surface in both planes is shown in figure 6. 

7. Inclusion of vortex forces in the barge response calculations 
In  the interests of simplicity, the expressions for the vortex induced force and 

moment will be derived for shedding for one edge only. The overall force may be 
obtained by summing the forces at each edge. 

The barge motions (see equation ( 2 ) )  may be written as 

H j  == Gj cos ( 8 - e j )  = .;I COSO,, (35) 

where G j  is the modulus of the complex amplitude 7, and ej is its argument, that is, 
the phase angle. Similarly the fluid displacement relative to the edge in the 
transformed barge plane (see figure 5 )  is H ,  = ?jb cos8, and in the transformed 
wedge plane is 

I 
H e  = Ge cos 8, = - cos 8,, (36) w 

where 0 is the velocity amplitude of the oscillatory flow about the isolated edge and 
w is its frequency. 

For a right-angled edge, the vortex force on the isolated edge (see equation (2)) is 
given by 

so that the force experienced by the barge becomes 

Fve = &d2L!Py, (37) 

Fvb = $pw2rjb a, IYa,, 

providing the flows are matched and r? = wGb, L = a, 1 and 8, = eb. The dimensionless 
vortex force function !P can be expressed in the form of a Morison equation whose 
coefficients have been evaluated by Graham (1980), and so the vortex force and 
moment can be written respectively as 

Fvb = -&wzfi a, 1(6 sin eb lsin 8,l + z2B cos 8,) a,,, (39) 

Mvb = Fvb lamv' (40) 
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Because of the nonlinear nature of the vortex forces, they give rise to higher 
harmonics, which computations show to be of the order of 10% of the terms of the 
fundamental frequency. In  order to carry out a response analysis in the frequency 
plane it is convenient to ignore these higher harmonics of the vortex force. They 
contribute little a t  resonance, giving a very small response at harmonics of the input. 
They may contribute significantly a t  subharmonics of the resonant frequency for 
which some resonant response may be excited. However, vessel-response calculations 
are much less important for these of€-resonant frequencies, where the wave damping 
becomes dominant, so the harmonics may safely be ignored. Thus, the vortex 
sway and heave forces, F,, = Re {F,,} and Fv3 = Im {F,,] and the vortex moment 
Fv4 = M,, can be expressed in terms of a Fourier series and, ignoring the higher 
harmonics written as 

Fvj = aIj cos 0 + b,, sin 0 = Re (I;j e-iW'}, (41) 

where 

b 13 . = -  1; fv j  sin 6' d8. (43) 

The equations of motion with vortex forces included are given by 

MH = X+F,, 

or [--'(Mjk+Ajk)-ioBjk+Cjk]?Ih: = fyj+fj-  (44) 

All the terms in the equations for the vortex force and moment are known with the 
exception of 7jb and 8,, because the vortex forces are nonlinear functions of the 
amplitudes of motion T ~ .  Solution of the equations therefore requires the use of an 
iterative procedure. I n  the present instance, the amplitudes of the motion were 
determined by minimizing the residuals Rj  where, 

8. Results 
A preliminary test of the method was the calculation of the damping experienced 

by a barge undergoing forced roll. The case study chosen was that of a barge whose 
beam to draught ratio was 10 and whose length was about 3.25 times its beam. The 
damping, expresse,d as a percentage of the critical damping, cc, is shown as a function 
of the roll amplitude in figure 7 and compared with experimental forced roll results 
carried out on a model. These experimental results are taken from tests carried out 
by BMT Ltd. As they are proprietary data the comparison is shown here, with their 
permission, without numerical scales. 

The motions of the same barge floating freely in regular beam waves were then 
computed for a range of frequencies. The roll response for unit wave amplitude, 
h, = 1, is shown in figure 8, which also shows the results that would have been given 
by the strip-theory calculation had the vortex forces not been included. Figures 9, 10 
and 11 show a comparison of the sway, heave and roll responses with experimental 
results obtained with hW=0.55h, ,  where h, is the draught of the barge. The 
experimental results were obtained for a barge of the same dimensions but with 
slightly rounded bilge corners. 
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A 
Wave damping 

FIGURE 7 .  Roll damping (expressed as percentage of critical damping, tC) t1.s. roll amplitude for 
barge undergoing roll at  natural frequency. A, natural decay tests; A, forced roll tests; 0, low- 
frequency analysis (Bearman et aE. 1982) ; +, present theory. 
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FIGURE 8. Roll response amplitude operator (RAO) 'us. wave frequency, h, = 1. ---, potential 
flow calculation; present theory. 

Finally, predictions and measurement of the roll response at the natural roll 
frequency are shown as a function of the wave amplitude in figure 12. 

The damping force predicted by the theory is made up of two components, one of 
which is proportional to  the amplitude of the radiated waves, and the other of which 
is due to vortex shedding and is proportional to the square of both the frequency and 
amplitude of the motion for a rectangular body. For forced roll a t  a given frequency, 
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FIGURE 9. Sway RAO ws. wave period, h, = 0.55 h,. + , round edged barge experimental 
results ; 0, sharp edged barge, present theory. 
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FIGURE 10. Heave RAO us. wave period, h, = 0.55 h,. + , round-edged barge experimental 
results ; 0, sharp-edged barge, present theory. 

this leads to a constant wave-damping coefficient and a vortex-damping coefficient 
that is linear with the roll amplitude, as shown in figure 7 .  The calculated and 
experimental results can be seen to be in good agreement with one another. 

The vortex forces are critically dependent upon the relative velocity of the fluid in 
the immediate vicinity of the bilge corners, which the calculations show to be very 
sensitive to the location of the roll centre and the barge geometry. Indeed, for any 
given barge there exists a roll centre for which there is no vortex shedding a t  all, the 
bilge corner behaving as a leading edge in a symmetric flow. This dependence of the 
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FIGURE 11. Roll RAO us. wave period, h, = 0.55 h,. + , round-edged barge experimental 
results; 0 ,  sharp-edged barge, present theory. 
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FIGURE 12. Roll amplitude us. wave amplitude at  natural roll frequency. A, round-edged barge 
experimental results ; ---, potential flow calculation ; -.-, present theory. 

Vortex damping on the location of the roll centre calls for a closer scrutiny of the 
practice of using forced roll results for the prediction of the motion of freely floating 
bodies. 

The roll RAO (response amplitude operator, G4/hw) of the barge floating freely in 
regular beam waves is shown in figure 8 and can be seen to be very similar to the 
results presented by Salvesen et al. and shown in figure 1. Both figures show that 
potential theory alone considerably overpredicts the roll response in the region of 
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resonance. The theoretical results of figure 8 also show a shift in the resonant 
frequency similar to that displayed by the experimental results of figure 1.  

A comparison of theoretical and experimental results is shown in figures 9, 10  and 
11.  As might be expected the two are in good agreement away from resonance where 
vortex shedding has little effect. The discrepancies around resonance, which are small 
in comparison with those displayed in figure 1 ,  can be explained by the fact that the 
model used in the experiment had slightly rounded bilges. The vortex forces are 
smaller for a round edged but otherwise comparable body with sharp edges, and so 
the damping is also smaller. 

The final figure of roll amplitude against wave amplitude demonstrates the 
nonlinear nature of the response near resonance. Again the results are compared with 
experimental results for a round-edged barge. The increase in accuracy obtained by 
including the vortex forces in the calculation is again clearly demonstrated. 

9. Conclusions 
It has been shown that the motions of a sharp-edged rectangular body floating 

freely in regular beam waves can be reasonably well predicted in all three degrees of 
freedom using a purely theoretical method. The result implies that the non-linearities 
in the responses are largely due to vortex shedding from the body surface providing 
the motions are not extreme. 

We gratefully acknowledge the financial support of BMT Ltd and the SERC 
Marine Technology Directorate for this work. 
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